Optimierte Langzeitsicherheit der Bohrlochverfüllungen durch Vibration-unterstütztes Zementieren

Dr. Tanveer Yaqoob, Dr. Jürgen Schamp, Dr. Melissa Perner, Otto Christopeit / Bereich Standortauswahl

1. Einleitung

- Für das Standortauswahlverfahren dient die bohrtechnische Erkundung in Phasen II und III zur genaueren Charakterisierung des geologischen Untergrunds.
- Nach der Beendigung der Bohrarbeiten wird der lokal erzeugte Hohlraum im Gebirge mit einem technisch vorgeschriebenen Verfüllungsmaterial aus Zementschlämmen wieder verschlossen.
- Es können bei der Verfüllung von Bohrungen über längere Zeiträume Undichtigkeiten entstehen.

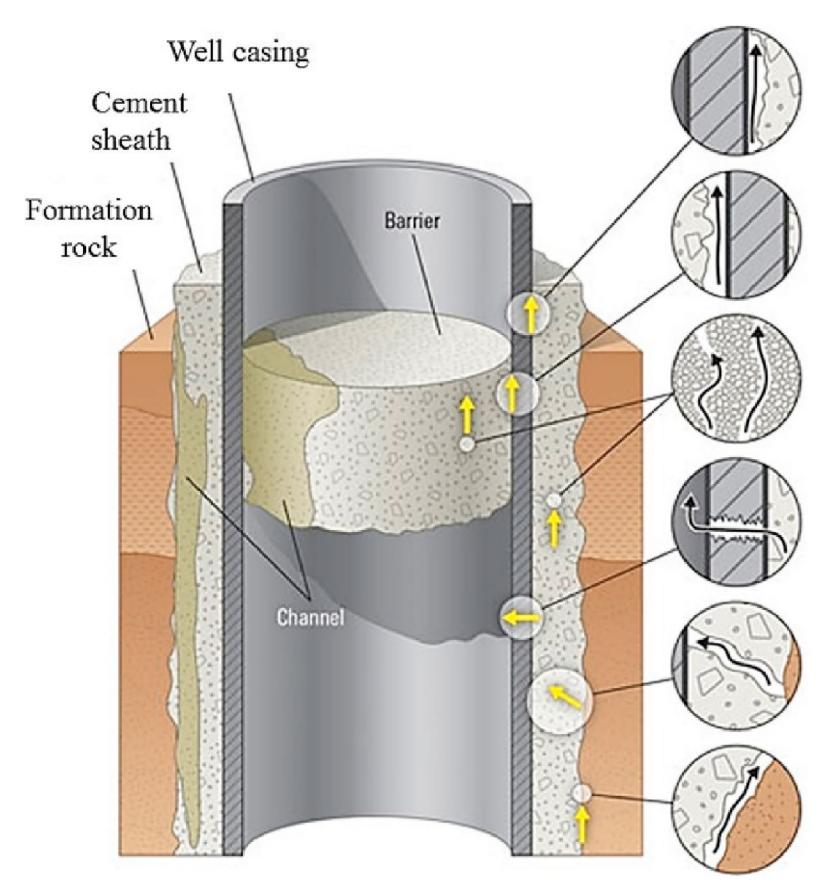


Abb. 1: Arten der Fließwege bei Bohrlochverfüllungen entstanden über Längere Zeiträume. Quelle: Offshore Magazine Schlumberger Artikel, Mai 2017

• Es ist bei den Bohraktivitäten im Zuge der Langzeitsicherheit entscheidend, dass das Deckgebirge durch Niederbringung der Erkundungsbohrungen nicht negativ beeinflusst wird, bzw. die wesentlichen geologischen Barrieren und deren Integrität erhalten bleiben.

2. Anwendung der Vibrationstechnik beim Zementieren

- Vibration-unterstütztes Zementieren ist eine gängige Methode zur Zementationsverbesserung im obertägigen Bauingenieurwesen.
- Das Forschungsprojekt umfasst die Untersuchungen der Auswirkungen von elektromagnetisch erzeugte Vibrationen auf die Zementeigenschaften und die hydraulische Abdichtung von Bohrlöchern.
- Als eine Erweiterung zu dem State-of-the-Art in Zementtechnologien wird die Nutzung von Vibrationstechnik zur Verbesserung der mechanischen Eigenschaften, sowie zu einer gleichmäßigen Verteilung des Zements geprüft.
- Das Ziel dabei ist, durch die Verfüllung die Langzeitsicherheit nach dem Verschluss des Endlagers gegen folgende Risiko Faktoren sicherzustellen:
 - Die Freisetzung von Radionukliden aus dem bebauten Endlager in die Biosphäre.
 - Ausströmende Bewegung von unzulässigen Gebirgsflüssigkeiten (z. B. Gase, Untergrund Wässer).
 - Eindringen von toxischen
 Chemikalien aus dem
 Endlager in die Biosphäre.
 - Unzulässige bodenmechanische Veränderungen (z. B. unnatürliche Hebungen oder Senkungen).

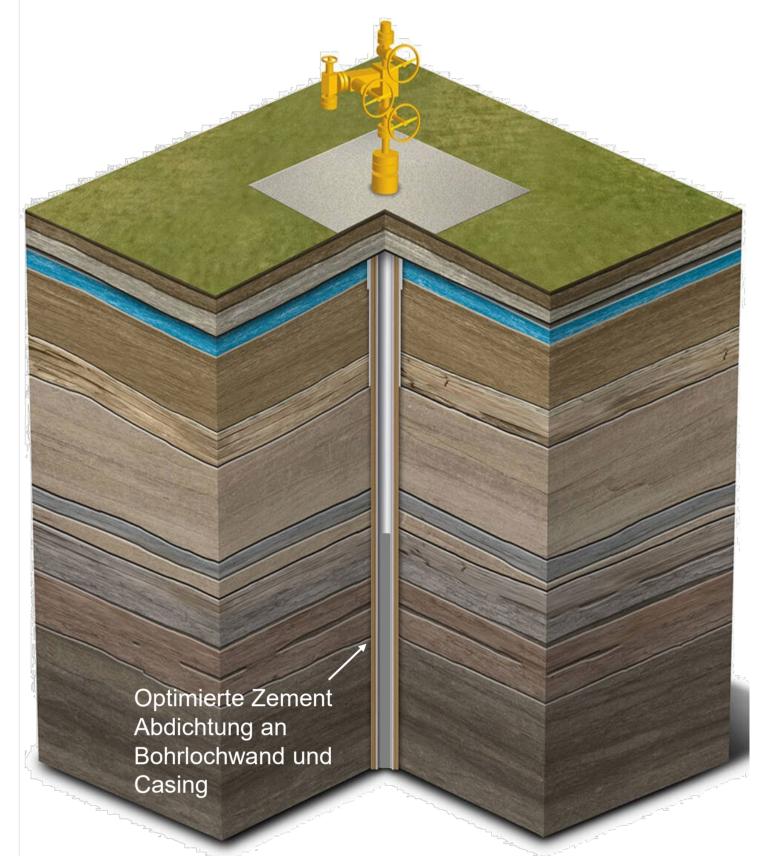
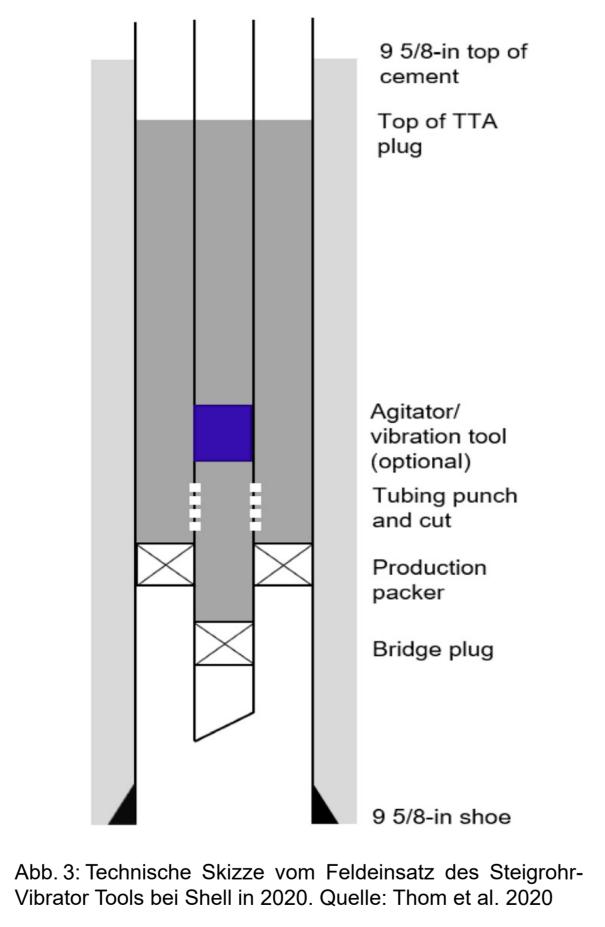



Abb. 2: Gezielte Langzeitsicherheit der Bohrungen durch Zementieren. Quelle: XTO Energy Webseite, Well Construction 2023

3. Feldeinsatz und Experimenteller Nachweis

Es liegen in Industriebranchen und Forschungseinrichtungen erfolgreiche Versuchserfahrungen vom Abdichten von Bohrungen mit Vibrationstechnik vor:

- Bei Shell wurde in 2020 in einer Nordsee Testbohrung der Feldeinsatz von einem Steigrohr Vibrator-Tool getestet.
- Es wurde nach der Bohrphase eine untertägige Zement-Verdrängung durchgeführt mit anschließendem Vibrieren durch ein radiales Vibratorwerkzeug (genannt Agitator) im Steigrohr.
- Die eingebrachte Vibrationsenergie führte dazu, die abdichtende Wirkung des Zements zu verstärken.
- Die Verteilung vom Zement wurde ebenfalls verbessert durch effektivere Verdrängung der Spacer- und Spülung-Flüssigkeiten.

 Das Projekt "Vibration Enabled Optimization of the Hydraulic Seal of Cement in Plug and Abandonment Wells" ist ein anderes Beispiel von den vorhandenen experimentellen Anwendungsfällen auf das Thema Zementvibrationen.

- Die Phase I des Projekts wurde vom Institute of Subsurface Energy Systems (ITE) an der TU Clausthal, in Kooperation mit Wintershall Holding GmbH von 2019 bis 2021 durchgeführt.
- Es wurde durch theoretische Recherche und Probeversuche dargelegt, dass die Einbringung der Vibrationsenergie die eingesetzten Bohrspülung und Spacer-Flüssigkeiten effektiver von der Bohrlochwand entfernen kann.
- Aufgrund dessen kann die Zementverfüllung möglichst abdichtend durchgeführt werden.

verbesserung in einer Probenkammer zur Simulation des offenen Bohrloches. Einpumpen der Zementschlämme ohne (Bild links) und mit (Bild rechts) Vibrationsenergie. Quelle: Pedrus et al. 2021

4. Projektphasen und Zukunftsaussichten

- Basierend auf den positiven Ergebnissen wird nun eine Projektphase II durchgeführt, in der systematische Untersuchungen zur Optimierung der kritischen Vibrations-Parameter (wie z. B. Vibrationsfrequenz, -dauer oder -energie) durchgeführt werden.
- Eine Phase III des Forschungsprojekts ist bereits angedacht und soll den Bau eines Prototyp-Werkzeuges mit Einsatz in einer Testbohrung umfassen.
- Die Projektphasen und deren Ziele sind sowohl beim Bau eines Endlagers als auch bei anderen Bohrlochverfüllungen in der traditionellen Öl- und Gastechnik, sowie bei den erneuerbaren Energien (z. B. Wasserstoffspeicher) von immer größerer Bedeutung.

Offshore Magazine, Integrated milling, underreaming approach streamlines P&A operations in the North Sea, Schlumberger Article May 2017

Pedrus, H.; Holzmann, J.; Oppelt, J.; Hallermann, M.; Peitz, R.: Laborstudie über die Auswirkungen von Vibrationen auf die Verbindung von Futterrohr und Zement bei Verfüllungsbohrungen. In: EEK 138 Jg. Ausgabe 6, S. 28-39

Thom, F., Angell, P., Greig, N., Robertson, N., Hogg, H., 2020. Case Study for Rig-Less Subsea Well Abandonment. In: SPE/ICoTA Well Intervention Conference and Exhibition, Vol. Day 2 Wed, March 25, 2020. SPE-199866-MS, pp. 1–16. http://dx.doi.org/10.2118/199866-MS

XTO Energy Article, Well Construction and Integrity 2023, https://exxonmobil.co/3400muy