

Radionuklidausbreitung Aspekt 1: Bewertung des Radionuklidtransportes in der Gasphase

Fachöffentliche Ergebnispräsentation ÜsiKo Phase 2, 23.10.2024

Überblick

Δ24: Radionuklidtransport in der Gasphase (Szenarien)

- Es ist darzulegen, welche Prozesse beim Radionuklidtransport in der Gasphase eine Rolle spielen
- Die Prozesse und Szenarien wurden beschrieben

 $\Delta 25$: Freisetzung von radioaktiven Gasen im und aus dem Grubengebäude in die Geosphäre $\Delta 26$: Radionuklidtransport in der Gasphase in der Geosphäre

- Es ist zu zeigen ob, und wie Gase aus dem Grubengebäude freigesetzt und in der Geosphäre transportiert werden
- Es wurde festgestellt, dass die Gase unterhalb der Unterkreide bleiben und nicht in die Biosphäre gelangen

Δ27: Untersuchung der Relevanz von Gas-Fracs für einen möglichen Radionuklidtransport in der Gasphase

- Es ist zu zeigen ob, gasdruckinduzierte Klüfte entstehen können
- Es wurde festgestellt, dass der Druck zu niedrig ist und keine gasdruckinduzierten Klüfte entstehen können

Szenario für den Gaspfad nach Stand von W&T

Beschreibung erfolgt entsprechend nationalen und internationalen Forschungsprojekten

- Sauerstoff im Grubengebäude wird durch aerobe Prozesse schnell aufgebraucht
- Lösung tritt in das Grubengebäude ein
- Nach 115 Jahren ist das Grubengebäude aufgesättigt
- Bei Kontakt der Abfälle mit Wasser werden durch die anaerobe Korrosion von Metallen und die organische Degradation von Organika Gase gebildet
- Gasdruckaufbau führt zu einer Gasbewegung und Verdrängung von Lösung
- Übersteigt der Gasdruck die Summe aus hydrostatischen Druck und Gaseindringdruck im Wirtsgestein kann Gas in das Wirtsgestein eindringen

Szenario für den Gaspfad nach Stand von W&T

Beschreibung erfolgt entsprechend nationalen und internationalen Forschungsprojekten

- Sauerstoff im Grubengebäude wird durch aerobe Prozesse schnell aufgebraucht
- Lösung tritt in das Grubengebäude ein
- Nach 115 Jahren ist das Grubengebäude aufgesättigt
- Bei Kontakt der Abfälle mit Wasser werden durch die anaerobe Korrosion von Metallen und die organische Degradation von Organika Gase gebildet
- Gasdruckaufbau führt zu einer Gasbewegung und Verdrängung von Lösung
- Übersteigt der Gasdruck die Summe aus hydrostatischem Druck und Gaseindringdruck im Wirtsgestein kann Gas in das Wirtsgestein eindringen
- Die große Menge gebildeter Gase kann bei einer Freisetzung als Trägergas für eine geringe Menge radioaktiver Gase fungieren (z. B. C-14, CH₃Se, C₂H₆Se, CH₃I)
- Gase können theoretisch bis in die Biosphäre transportiert werden, wo der radioaktive Anteil zu einer Strahlenexposition führen könnte
 - Falls dies der Fall ist, dann sind die radiologischen Konsequenzen zu bewerten

Vorgehen

Gasbildung

- Gasbildung durch anaerobe Korrosion von Metallen und der mikrobiellen Degradation von Organika
- Stoffmengen nach Kugel & Möller 2003
- Größte Masse der Stoffe haben die Abfallbehälter mit 294 622 Tonnen Eisen
- Gebildete Gasmenge wird durch die chemische Reaktionsgleichung bestimmt
- Reaktion mit maximaler Gasbildung wird gewählt

Stoff	Menge [t]	Reaktionsgleichung
Aluminium	916	$2 \text{ AI} + 6 \text{ H}_2\text{O} \rightarrow 2 \text{ AI}(\text{OH})_3 + 8 \text{ H}_2$
Zink	3,5	$Zn + 2 H_2O \rightarrow Zn(OH)_2 + H_2$
Zirkonium	1 528	$Zr + 2 H_2O \rightarrow ZrO_2 + 2 H_2$
Eisen	319 741	3 Fe + 4 H ₂ O \rightarrow Fe ₃ O ₄ + 4 H ₂
Organika/Zellulose	815	$C_6H_{12}O_6 + 2 H_2O \rightarrow 4CO_2 + 4 H_2 + 2CH_4$
Kunststoffe/Öle	8 443	$6 \text{ C}_{2}\text{H}_{4} + 16 \text{ H}_{2}\text{O} \rightarrow 8 \text{ CO}_{2} + 20 \text{ H}_{2} + 4 \text{ CH}_{4}$

Gasbildung

- Gasbildung durch anaerobe Korrosion von Metallen und der mikrobiellen Degradation von Organika
- Stoffmengen nach Kugel & Möller 2003
- Größte Masse der Stoffe haben die Abfallbehälter mit 294 622 Tonnen Eisen
- Gebildete Gasmenge wird durch die chemische Reaktionsgleichung bestimmt
- Reaktion mit maximaler Gasbildung wird gewählt
- 3 Varianten als Grundlage f
 ür die numerischen Rechnungen
 - Referenzfall: Erwartete Umsetzungsdauer, erwartete Ausfällung von CO₂
 - Variante: Schnelle Umsetzung, keine Ausfällung von CO₂
 - Lastfall: Wie Variante, mit fünffach erhöhter Stoff- / Gasmenge
- Gasproduktion ist nicht durch den Wasserverbrauch beschränkt

Material	Umsetzungsdauer [a]		
	Referenzfall	Variante	
Umsetzungsdauer Eisen [a]	300 000	3 000	
Umsetzungsdauer sonst. Metalle [a]	100	100	
Umsetzungsdauer Zellulose [a]	1 000	1 000	
Umsetzungsdauer Kunststoffe [a]	100 000	10 000	

Zeitliche Entwicklung der Gasmenge

 Gasmenge ist zu groß, um im Grubengebäude gespeichert zu werden, Freisetzung aus dem Grubengebäude ist numerisch zu untersuchen

Geologisches Modell

Geometrie des numerischen Modells mit TOUGH2

Geometrie des numerischen Modells mit TOUGH2

Eingangsdaten

Parameter	Unterkreide	Kimmeridge	Oxford	Grubengebäude
Porosität n [-]	0,2**	0,1***	0,1***	0,4*
Permeabilität κ [m²]	6·10 ^{-18**}	1·10 ^{-16***}	1·10 ⁻¹⁵ ***	1·10 ⁻¹¹ ***
Residuale Wassersättigung S _{Ir} [-]	0,5**	0,35***	0,275***	0,2***
Residuale Gassättigung S _{gr} [-]	0,003**	0,05***	0,035***	0,02***
Maximale Wassersättigung [-]	1,0*	1,0*	1,0*	1,0*
Initiale Wassersättigung S _{wini} [-]	1,0*	1,0*	1,0*	0,7*
Gaseindringdruck α [Pa]	1,8·10 ⁷ **	7.500***	5.000***	1.500***
Abschneidekriterium P _{max} [Pa]	1·10 ^{9*}	1·10 ^{9*}	1·10 ^{9*}	1·10 ⁹ *
Formfaktor λ [-]	0,5**	0,9***	0,85***	0,83***
Feststoffdichte [kg/m³]	2.600*	2.600***	2.600***	2.600***
Porenkompressibilität [Pa ⁻¹]	5,8·10 ^{-10*}	5,8·10 ^{-10***}	5,8·10 ^{-10***}	5,8 [.] 10 ^{-10***}

* Modellannahme

** Nagra, 2008

*** GRS-A-1925

Referenzfall: Ergebnisse zur Gasausbreitung

Gasverteilung (Sättigung SL) nach 300.000 Jahren

Referenzfall: Ergebnisse zur Gasausbreitung

Referenzfall: Ergebnisse zur Gasausbreitung

- Gasaufstieg bis zur Unterkante der Unterkreide benötigt 8 000 Jahre
- Gasausbreitung zum Ende der Gasbildung bei 300 000 Jahren 2,6 km
- Maximaler Durchmesser der Gasausbreitung an der Unterkante der Unterkreide beträgt 2,8 km nach 500 000 Jahren
- Gas ist nach 2,1 Million Jahren bis auf residuale Gasmengen vollständig aufgelöst

Variationsrechnungen

- Gasproduktion
 - Gasproduktionsrate
 - Gasmenge
- Transportparameter
 - Porosität des Oxford und Kimmeridge
 - Permeabilität des Oxford und Kimmeridge
 - Anisotrope Permeabilität des Kimmeridge
 - Relative Permeabilität
 - Gaseindringdruck der Unterkreide
 - Formfaktor des Oxford und Kimmeridge
- Anzahl und Größe der Volumenelemente an der Grenze Kimmeridge / Unterkreide

Ergebnisse der Variationsrechnungen

- Gasproduktion mit höherer Rate
 - Die Gasphase erreicht die Unterkante der Unterkreide fr
 üher Aufstieg ben
 ötigt 400 Jahre
 - Maximale Ausbreitung wird früher erreicht und ist etwas größer Nach 90.000 Jahren hat sich die Gasphase 3,2 km radial ausgebreitet
 - Das Gas braucht ähnlich lang um wieder vollständig aufgelöst zu werden Nach 1,8 Mio. Jahren hat sich das Gas bis auf die residuale Gassättigung aufgelöst
 - Maximaler Fluiddruck höher als im Referenzfall, aber weit unterhalb des lithostatischen Drucks
- Variation des Gaseindringdrucks der Unterkreide
 - Verringerung um eine Größenordnung (1,8·10⁶ Pa)
 - Gasphase verbleibt unterhalb der Unterkreide

Ergebnisse für den Fluiddruck im Referenzfall

Fluiddruck ist geringer als der lithostatische Druck in der entsprechenden Teufe

Ergebnisse für den Fluiddruck in der Variante

- Fluiddruck ist auch in der Variante und dem Lastfall geringer als der lithostatische Druck in der entsprechenden Teufe
 - Δ27: Die Bildung von Gasfracs ist f
 ür die angenommenen Randbedingungen ausgeschlossen

Einfluss von Altbohrungen und des Schachts auf die Gasausbreitung

- Altbohrungen stellen keinen potenziellen vertikalen Ausbreitungspfad f
 ür relevante Gasmengen dar
- Dauer, bis die Gase die Unterkreide erreichen, f
 ührt zur Wiederherstellung der g
 ünstigen Eigenschaften des Tongesteins im Bereich der abgedichteten Bohrungen
- Bei der Ausführungsplanung zur Verfüllung der Schächte vor dem Abschluss des Endlagerbetriebes (Nebenbestimmung A.7-1 im PFB) sind Schachtverschlusselemente in Unter-/Oberkreide zu berücksichtigen, bei denen der Gaseindringdruck und die Permeabilität des Materials nicht mehr als zwei Größenordnungen über jenen der Unterkreide liegen

Fazit

Δ24: Radionuklidtransport in der Gasphase (Szenarien)

• Die Prozesse und Szenarien wurden beschrieben

Δ25: Freisetzung von radioaktiven Gasen im und aus dem Grubengebäude in die GeosphäreΔ26: Radionuklidtransport in der Gasphase in der Geosphäre

- Es ist zu erwarten, dass in der Nachbetriebsphase Gas aus dem Grubengebäude in die Geosphäre entweicht
- Die Gase und gasförmige Radionuklide verbleiben unterhalb der Unterkreide
- Radioaktive Gase können nicht bis in die Biosphäre transportiert werden
- Eine Strahlenexposition in der Biosphäre ist somit nicht zu betrachten

Δ27: Untersuchung der Relevanz von Gas-Fracs für einen möglichen Radionuklidtransport in der Gasphase

• Es wurde festgestellt, dass der Druck zu niedrig ist und keine gasdruckinduzierten Klüfte entstehen können

Alle Deltas wurden bearbeitet und sind nicht sicherheitsrelevant